您目前的位置: 首页» 师资团队» 教授

李伟

 

  

  

  李  伟                                                       电话:010-68918217

 

  教授、博士生导师                                     邮箱:liw@bit.edu.cn (leewei36@gmail.com)

 

  北京理工大学信息与电子学院                    地址:北京理工大学信息科学实验楼508东

 

基本情况:

 

李伟,北京理工大学信息与电子学院教授,博士生导师,国家优秀青年科学基金获得者。2012年获密西西比州立大学博士学位,在加州大学戴维斯分校完成博士后研究。主要从事高光谱图像处理、目标检测与识别等方法研究,相关技术在遥感观测和医学诊断等领域得到推广应用。以第一/通讯作者在IEEE TGRS、IEEE TIP、IEEE TCYB等期刊发表论文60余篇,谷歌学术引用6000余次,ESI高被引论文14篇。担任IEEE JSTARS、IEEE SPL编委(Associate Editor),IEEE TGRS领域编委(Topical Associate Editor),和第11届IEEE CISP-BMEI国际会议大会主席。曾获IEEE TGRS、IEEE JSTARS最佳审稿人奖,IEEE Whispers 2019、IEEE ICSIDP 2019杰出论文奖,入选北京市科技新星计划。

 

 

科研项目:

 

北京市自然科学基金杰出青年科学基金项目,“高光谱图像处理与应用研究”,项目号JQ20021,负责人,2020.10—2023.12

国家自然科学基金优秀青年科学基金项目,“高光谱图像分类”,项目号61922013,负责人,2020.01—2022.12

国家自然科学基金重大研究计划项目,“空间信息网络下的高光谱遥感协同观测理论与方法研究”,项目号91638201,课题负责人,2017.01—2020.12

北京市科技新星计划项目,“用于重大疾病精准诊断的高光谱显微图像细胞检测关键技术研究”,项目号Z171100001117050,负责人,2017.01—2019.12

北京市自然科学基金面上项目,“基于稀疏表示的医学高光谱图像细胞识别关键技术研究”,项目号4172043,负责人,2017.01—2019.12

国家自然科学基金面上项目,“表示模型框架下高光谱遥感影像分类若干技术研究”,项目号61571033,负责人,2016.01—2019.12

国家自然科学基金青年基金项目,“基于最近正则子空间模型的高光谱遥感图像分类及异常检测研究”,项目号61302164,负责人,2014.01—2016.12

 

  

部分论文/期刊:


[37] J. Liu, Z. Hou, W. Li*, R. Tao, D. Orlando, and H. Li,“Multi-Pixel Anomaly Detection With Unknown Patterns for Hyperspectral Imagery,”IEEE Transactions on Neural Network and Learning Systems, in print, 2021. [Matlab code]

[36] L. Li, W. Li*, C. Zhao, Y. Du, R. Tao, and Q. Du,“Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery,”IEEE Transactions on Neural Network and Learning Systems, in print, 2021. [Matlab code]

[35] L. Li, W. Li*, Q. Du, and R. Tao,“Low-Rank and Sparse Decomposition with Mixture-of-Gaussian for Hyperspectral Anomaly Detection,”IEEE Transactions on Cybernetics, in print, 2021. [Matlab code]

[34] Z. Huang, W. Li*, X. Xia, H. Wang, F. Jie, and R. Tao,“LO-Det: Lightweight Oriented Object Detection in Remote Sensing Images,”IEEE Transactions on Geoscience and Remote Sensing, in print, 2021. [Demo code]

[33] Z. Huang, W. Li*, X. Xia, X. Wu, Z. Cai, and R. Tao,“A Novel Nonlocal-Aware Pyramid and Multi-Scale Multi-Task Refinement Detector for Object Detection in Remote Sensing Images,”IEEE Transactions on Geoscience and Remote Sensing, in print, 2021. [Demo code]

[32] M. Zhao, W. Li*, L. Li, P. Ma, Z. Cai, and R. Tao,“Three-Order Tensor Creation and Tucker Decomposition for Infrared Small-Target Detection,”IEEE Transactions on Geoscience and Remote Sensing, in print, 2021.

[31] M. Zhao, L. Li, W. Li*, R. Tao, L. Li, and W. Zhang,“Infrared Small-Target Detection Based on Multiple Morphological Profiles,”IEEE Transactions on Geoscience and Remote Sensing, in print, 2021.

[30] M. Lv, W. Li*, T. Chen, J. Zhou, and R. Tao,“Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery,”IEEE Journal of Biomedical and Health Informatics, in print, 2021.

[29] M. Lv, W. Li*, R. Tao, N. H. Lovell, Y. Yang, T. Tu, and W. Li,“Spatial-Spectral Density Peaks-Based Discriminant Analysis for Membranous Nephropathy Classification Using Microscopic Hyperspectral Images,”IEEE Journal of Biomedical and Health Informatics, in print, 2021.

[28] Y. Zhang, W. Li*, R. Tao, J. Peng, Q. Du, and Z. Cai,“Cross-Scene Hyperspectral Image Classification with Discriminative Cooperative Alignment,”IEEE Transactions on Geoscience and Remote Sensing, in print, 2021.

[27] N. Liu, L. Li, W. Li*, R. Tao, J. E. Fowler, and J. Chanussot,“Hyperspectral Restoration and Fusion with Multispectral Imagery via Low-Rank Tensor Approximation,”IEEE Transactions on Geoscience and Remote Sensing, in print, 2021. [Matlab code]

[26] X. Zhao, R. Tao*, W. Li, H. Li, Q. Du, W. Liao, and W. Philips,“Joint Classification of Hyperspectral and LiDAR Data Using Hierarchical Random Walk and Deep CNN Architecture,”IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7355-7370, October 2020. [Demo code]

[25] X. Wu, W. Li*, D. Hong, J. Tian, R. Tao, and Q. Du,“Vehicle Detection of Multi-source Remote Sensing Data Using Active Fine-tuning Network,”ISPRS Journal of Photogrammetry and Remote Sensing, vol. 167, pp. 39-53, September 2020.

[24] Y. Zhang, W. Li*, H. Li, R. Tao, and Q. Du,“Discriminative Marginalized Least Squares Regression for Hyperspectral Image Classification,”IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3148-3161, May 2020. [Matlab code]

[23] J. He, L. Zhao*, H. Yang, M. Zhang, and W. Li*,“HSI-BERT: Hyperspectral Image Classification Using Bidirectional Encoder Representation from Transformers,”IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 1, pp. 165-178, January 2020. [Demo code]

[22] Q. Huang, W. Li*, B. Zhang, Q. Li, R. Tao, and N. H. Lovell,“Blood Cell Classification Based on Hyperspectral Imaging with Modulated Gabor and CNN,”IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 1, pp. 160-170, January 2020. 

[21] X. Li, W. Li*, and R. Tao,“Staged Detection-Identification Framework for Cell Nuclei in Histopathology Images,”IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 1, pp. 183-193, January 2020. 

[20] M. Zhang, W. Li*, Q. Du, L. Gao, and B. Zhang,“Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN,”IEEE Transactions on Cybernetics, vol. 50, no. 1, pp. 100-111, January 2020. 

[19] N. Liu, W. Li*, R. Tao, and J. E. Fowler,“Wavelet-Domain Low-Rank/Group-Sparse Destriping for Hyperspectral Imagery,”IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 10310-10321, December 2019. [Matlab code]

[18] R. Tao, X. Zhao, W. Li*, H. Li, and Q. Du,“Hyperspectral Anomaly Detection by Fractional Fourier Entropy,”IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 12, pp. 4920-4929, December 2019. [Matlab code] 

[17] X. Wei, W. Li*, M. Zhang, and Q. Li,“Medical Hyperspectral Image Classification Based on End-to-End Fusion Deep Neural Network,”IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 11, pp. 8954-8967, September 2019.

[16] W. Li, Y. Zhang, N. Liu, Q. Du, and R. Tao,“Structure-Aware Collaborative Representation for Hyperspectral Image Classification,”IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 7246-7261, September 2019. [Matlab code] 

[15] N. Liu, W. Li*, and Q. Du,“Unsupervised Feature Extraction for Hyperspectral Imagery Using Collaboration-Competition Graph,”IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 6, pp. 1491-1503, December 2018. [Matlab code]  

[14] M. Zhang, W. Li*, and Q. Du, “Diverse Region-Based CNN for Hyperspectral Image Classification,”IEEE Transactions on Image Processing, vol. 27, no. 6, pp. 2623-2634, June 2018. [Demo code

[13] W. Li, F. Feng, H. Li, and Q. Du, “Discriminant Analysis-Based Dimension Reduction for Hyperspectral Image Classification: A Survey of the Most Recent Advances and an Experimental Comparison of Different Techniques,”IEEE Geoscience and Remote Sensing Magazine, vol. 6, no. 1, pp. 15-34, March 2018. [Cover Page Article]

[12] X. Xu, W. Li*, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource Remote Sensing Data Classification Based on Convolutional Neural Network,”IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 937-949, February 2018. [Demo code

[11] W. Li, G. Wu, and Q. Du, “Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery,”IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 597-601, May 2017. [Demo code

[10] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral Image Classification Using Deep Pixel-Pair Features,”IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 2, pp. 844-853, February 2017. [Matlab code

[9] W. Li and Q. Du, “Laplacian Regularized Collaborative Graph for Discriminant Analysis of Hyperspectral Imagery,”IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7066-7076, December 2016.

[8] W. Li, J. Liu, and Q. Du, “Sparse and Low Rank Graph-Based Discriminant Analysis for Hyperspectral Image Classification,”IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 7, pp. 4094-4105, July 2016. [Matlab code]

[7] W. Li, Q. Du, and B. Zhang, “Combined Sparse and Collaborative Representation for Hyperspectral Target Detection,”Pattern Recognition, vol. 48, no. 12, pp. 3904-3916, December 2015. [Matlab code]

[6] W. Li, C. Chen, H. Su, and Q. Du, “Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification,”IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp. 3681-3693, July 2015. [Matlab code

[5] W. Li and Q. Du, “Collaborative Representation for Hyperspectral Anomaly Detection,”IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1463-1474, March 2015. [Matlab code

[4] W. Li, S. Prasad, and J. E. Fowler, “Decision Fusion in Kernel-Induced Spaces for Hyperspectral Image Classification,”IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 6, pp. 3399-3411, June 2014. [Matlab code]

[3] W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, “Nearest Regularized Subspace for Hyperspectral Classification,”IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 477-489, January 2014. [Matlab code

[2] W. Li, S. Prasad, and J. E. Fowler, “Classification and Reconstruction from Random Projections for Hyperspectral Imagery,”IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 833-843, February 2013. [Matlab code]

[1] W. Li, S. Prasad, J. E. Fowler, and L. Bruce, “Locality Preserving Dimensionality Reduction and Classification for Hyperspectral Image Analysis,”IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1185-1198, April 2012. [Matlab code

 

 

社会兼职:

 

[4] 2020年12月至今,担任《中国图象图形学报》青年编委

[3] 2020年6月至今,担任IEEE Transactions on Geoscience and Remote Sensing领域编委(Topical Associate Editor)

[2] 2019年3月至今,担任IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing编委(Associate Editor)

[1] 2018年1月至今,担任IEEE Signal Processing Letters编委(Associate Editor)

 

 

  •   欢迎对数字图像处理和模式识别研究感兴趣的同学加入我们的课题组。